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The method of separation of motions [l, 27 has been applied to autonomous 
systems whose principal part is defined by an arbitrary constant matrix while 

the perturbations are defined by arbitrary polynomials in the unknown functions, 

The results obtained are used to get the evolutionary equations in the problem 
of forced oscillations in one two-frequency system in the case of resonance . 

The method of separation of motions. as applied to quasi-linear autonomous 
systems, consists in the separation of the fast motions, determined by the sys- 

tem’s principal part, from the slow {evolutional) motions, determined by the 

small perturbing terms. It was first proposed by Molchanov and used for solving 
the stability problem for the case when the principal part is specified as a dia- 

gonal matrix and the perturbations have the form of polynomials [l. 21. 

1. We consider the system 

dX / f& = A, (X) + en, (X) (I.31 

Here X (I) is the unknown, A 0 (X) and A 1 (X) are specified vector-valued func- 

tions. In (1.1) we make a change in the unknown function 

Y = x - EQ (X) f1.2) 

Then, in the new variables we obtain 

dY / fit = A, (Y) + F IA, (Y) - LA, ryll + 0 (E’) (1.3) 

L.4, IQ] = g A0 V) - +g 0 (Y) 

As was shown in [I. 21, in order to be able to carry out a separation of motions in (1.1) 
it is necessary and sufficient that there exist a solution of the following system of equa- 

tions : 
B(Y)=d,(Y)--A,[Q(Y)I* &I, [B(Y)] = 0 (1.4) 

If a solution of (1.4) exists, then the asymptotic solution, satisfying (1.3) to within terms 
0 (8) at times t - c-l, can be obtained in the following way. In the solution of the 
unperturbed (with e =Z 0) system Y = f (E, 1) , in the place of the initial data vector 
g we should substitute the solution of the equation 

dE / dt = FE (t) (1.5) 

which is the evolutionary equation for (1.3), then the solution of the original system 
(1.1) is obtained by inverting formula (1.2). 

The question of the solvability of system (1.4) can be fully answered if AoY is a 
linear function while -4, {Y) has the form of a polynomial of arbitrary degree JJ. For 
the operator L, 0 {QP] the homogeneous polynomials form invariant subspaces in each 
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of which ii can he represented as a consLant matrix of finile order. This permits 11s IO 

stdy the properties of the operator in each of the suhspaces independently. For the iso- 

lated A,, and A, the condition for the solvability of system (1.4) is equivalent to the 
following: the basis of the kernel of operator L_JO [&,I must be formed only from the 

eigenvectors of the operator. The case of a diagonal A, was analyzed in @]. In each 
of the invariant subspaces the operator L A0 IQ& is given as a diagonal matrix, and sys- 

tem (1.4) has always a unique solution. The function B (E), defining the right-hand 

side of Eq. (1.5). contains those terms from A, which correspond to zero diagonal ele- 
ments of matrix LAO [Q]. These are exactly those terms from A, (X) which cannot be 

made to vanish by means of substitution (1.2) for any choice whatsoever of the function 
Q. The terms occurring in B (f) can be called resonant relative to 

2. Let us extend the method of separation of motions [l, ‘21 to autonomous systems 

of form (1.1) , the matrix of whose linear part has a normal Jordan form, while the per- 
turbation A, (X) is a polynomial R,, (X) of degree p. By G we denote the matrix 
of the principal linear part of system (1.1). Everywhere in what follows we assume that 
G does not have zero eigenvalues. It is easily verified that if the matrix of the operator 

LG [QJ has a zero eigenvalue of multiplicity greater than the first, then the basis of 
the kernel of this operator consists of eigenvectors and adjoint vectors. Consequently, 

system (1.4) is unsolvable for an arbitrary A, (X) from the class indicated above. 
In order to apply the method of separation of motions to the systems described, as the 

fundamental fast motion we take not the solution of the unperturbed system but a certain 

fictitious motion chosen so as to fulfill the conditions: 
1) the system with fast motion chosen in such a manner reduces to a form admit- 

ting of a separation of motions ; 
2) the structure of the resulting evolutionary equations permits the introduction 

of “slow time” in them. 
At first suppose that G consists of one Jordan cell 

h20.0 
011.0 

c.= .**... 
000.1 
0 0 0 . h 

Let US represent G as a sum of two matrices 11 and K, where ~2 contains the diagonal 
elements of G and K contains the rest. We can verify that A and K always commute 
with each other. If G consists of several Jordan cells, then, having made an analogous 
partitioning, we can see that 11 and K commute. We can show that the condition for 

the commutativity of matrices A and K is equivalent to the equality LA [KXI 2: 0. 
The fulfillment of this condition signifies that the system whose principal part is given 
by matrix A while the perturbation is given by KX, admits of a separation of motions. 
If for the same principal part the perturbation has the form of a polynomial, then the 
system reduces to a form admitting of a separation of motions, since fl is diagonal. 
Consequently, if in system (1.1) the term .\X is taken as the principal part, while KX 
refers to the perturbation, then the evolutionary Eqs.(l. 5) have, by virtue of the linearity 

of operatcr L.,, [(1] , the fornl 

dY/dt=.KY + EH(Y) (2.1) 
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where B (I’) contains the resonant terms isolated from the perturbation A, (x). 

Thus, formula (2.1) determines the structure of the evolutional equations if G has 
a normal Jordan form. Here not all terms in the right-hand side of (2.1) are of unit 
order. Let us show that system (2.1) admits of the introduction of “slow time”. Suppose 

that the maximum length of the Jordan chains in G equals k and that, for simplicity, 
there is only one chain of this length. Let us write out the group of equations from system 

(2.1) corresponding to this chain, 

$A I dt = Yi+l + e& (Y) (i=l,...,k--1), dy, i dt = eb, (Y) (2.2) 

If in (2.2) we set E = 0, then the resulting system is equivalent to the equation yy-l’= 
0 whose solution does not depend on B (Y). Consequently, a system with principal 
terms isolated in such fashion has turned out to be degenerate. To remove this degene- 

racy we make in (2.2) a scale transformation of the variables where we leave the scale 
of gr unchanged. We introduce the new variables by the formulas 

Yi = g(i-1) / kn. *z (i = 1, . , ,, k), t = E-’ “t (2.3) 

In the new variables (2.2) takes the form 

dzi /dz r;= ~~~~ -+ &(‘-“!h’bi (Z), dc, : dt = b,, (2) (2.4) 

Hete in each of the equations the principal part is of unit order so that the system result- 
ing from (2.4) for E = 0 now is not degenerate and, at the same time, its right-hand 

part is considerably simpler than in system (2.2). Here, in the function 0,; (Z) the 
terms containing zi (i = 2,.. . , k) are of a higher order of smallness than the terms 

depending only on zr , From formulas (2.3) for the scale transformation of the variables 
we see that the characteristic time scale f, on which Eq. (2.4) describes the slow evo- 
lution of system (1.2), equals to e-‘/k and is the smaller the larger is the maximum 
length of the Jordan chains in G. 

3. Let us consider a system of form (1. I) whose principal part is given by an arbi- 
trary constant matrix A ,, while, as before, the perturbations are polynomials of degree 
no higher than p_ To obtain the evolutionary equations we can transform A, beforehand 

to a canonic form and next use the scheme described in Sect. 2, However, such a way 
is not always convenient because the perturbation terms which have a simple form in 

the original system may be overly complicated in the transformed system, Moreover, 
complex coefficients can possibly appear in the perturbation, which makes the investi- 

gation of the resulting evolutionary system difficult, If A, is not transformed to canonic 
form, the process of obtaining the evolutional equations according to the general scheme 

reduces to the following operations. For each of the matrices LA0 ]&I we seek the 
eigenvectors corresponding to h = 0. If the collection of all such eigenvectors forms 
the kernel’s basis, then, having written out the terms corresponding to their coordinates, 
we obtain the desired evolutionary equations. For an arbitrary A, the matrices LA0 ]&,I 
come out to be of general form, therefore, the search for the corresponding eigenvectors 
is a difficult problem, since the orders of the matrices LAB ]&] grow rapidly as p in- 
creses. 

Below we point out a method, suitable for applications, of obtaining evolutionary 
equations, whichdoesnotrequi,re the study of the structure of matrices LA,]&]. We shall 
show that the desired equations can be obtained from the evolutionary equations written 
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down for the case when A,, has been reduced to a canonic form. The process of obtain- 
ing the desired evolutionary equations actually reduces to the following operations: 

1) the search for the zero elements of a diagonal matrix (since for a diagonal A, 

the operator &Ae [Qp] is specified by a diagonal matrix) ; 
2) the application of a certain linear transormation of variables to the elements 

found. 
let us first consider the case when A o is reduced to the diagonal form WA ,B = h. 

We shall show that the matrices LA, [l&l and LA [Q,] are similar, i.e. there exists 

a nonsingular matrix P where 
LA = F1LA,P (3.1) 

Hence it follows that the eigenspaces of these matrices are of l&e dimension, and the 
eigen!feCtOrs Of matrix LA, stand in columns in P If we have succeeded in finding 
matrix P explicitly, then, having taken from it the columns corresponding to the zero 
eigenvahe Of matrix LA, , Or eqUiVak%tly, Of L A, we obtain the evolutionary equations 
for an arbitrary A o reducible to diagonal form. 

We proceed to prove formula (3.1). We introduce a notation for the elements of the 

matrices 
AO == IJ ‘ii u, ’ = JJ bji 1). B-1 = JJ cj+ [I 

Let the k th coordinate of the vector A1 (X) have the form 

k 
um1...m x m, . . . x mP 

P 
k=i,. . .,n;Z]mP=p) 

P 

Here and everywhere below a repreated index implies a summation from one to n. In 
(1.2) we make the change of unknown functions xi = b:Yj and the inverse change 

i Y = cjixJ. Then in the new variables the corresponding coefficient in the perturbation is 

(3.2) 

If the coefficients of the polynomials QP are taken to be the coordinates of a certain 

vector (/ then (3.2) can be treated as a formula for the linear transforrjiation of these 
coordinates under a change of basis given by the matrix f-1 = If b&. . . b$ c,” 11. Here the 
indices II, . . . lp, a determine the column number and nal, . . . mps k s the r%w number. 

Analogously we can obtain P = II& . - . Cmp a , Ip b” II where the indices have the same sense 

as in P-1. It is easily verified that PP-1 = P-IP = E. Let us write out the operator in 

explicit form 

LA@ [Qp O’II = Ym’ * * - YmP I&, (ufm,...mp_, f * * * f UEz ,,,. mp_:) - a~*~l.,.mpI 

With respect to the coefficients of the ~lynomial within the brackets, this formula 
defines a linear transformation with the matrix 

Here 6$* is the Kronecker symbol, the indices nl, . . ., np, I determine the column num- 
ber, and ml, . ., mp, h’ the row number. 

The matrix of operator L, [QP (Yj] is obtained from the matrix L,,(r) [Q, (Y)j by 

replacing aji by hji. The validity of the formula PL ‘I = L,40P can be checked directly, 
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for which it is necessary to make use of the identities a,ibE;x = bpih,P, c,iaja - hs%j+, 

Formula (3.1) is proven. 
Below, by an example of an actual problem, we show that it is not necessary to know 

the explicit form of matrix P , but that it is sufficient to know the matrices B and B-’ 

for obtaining the desired evolutionary equations. If d, has a normal Jordan form as its 
canonic form, i.e. B-I A ,B = G, then A0 should be represented as a sum of two 
matrices ~4:” and A p in such a way that the matrix B-r Air’ B would coincide 
with the diagonal part of matrix G; then, obviously, B-f At” B coincides with its 

off-diagonal part. After this we should seek the eigenvectors of the kernel of the opera- 
tor Lair) [ Qp] , and refer the matrix Ai*’ to the perturbations. Although certain terms 

in the evolutionary equations do not contain the small parameter E as a factor, the 
introduction of “slow time” proves, nevertheless, to be possible since these equations can 

be brought to form (2.4) by means of a certain linear transformation. 

4, Let us apply the results presented above to the problem of forced oscillations in 
a multifrequency system whose principal part is linear and has constant mutually-incom- 
mensurable frequencies. let a harmonic oscillator acting on the system in a two-fold 
manner be used as the external perturbing force. Firstly, this force is explicitly present 
as a term in the right-hand side of the system without an assumption of its smallness. 
Secondly, it enters in an arbitrary way in the small nonlinear terms in the system with 

the condition that the requirement of smoothness up to the needed order of the right- 

hand sides is fulfilled. We pose the problem of describing the asymptotic behavior of 
the system for small values of parameter a in the case when the frequency of the exter- 

nal force is close to one of the system’s natural frequencies. 

In order to apply the method of separation of motions it is necessary first of all to 

reduce the original system to an autonomo~ one, which is easily accomp~shed by add- 
ing on new unknown functions satisfying the equation of the harmonic oscillator. Since 
the natural frequencies of the original system are incommensurable, resonance manifests 

itself when the external perturbing force reacts with that group of unknown functions 
which correspond to the resonant frequency, Therefore, the typical features of oscilIa- 

tions under resonance of multi~equency systems can be exposed in a two-frequency 

system of the form 
dX I dt = A,X + A,X + &A, (X) + &A, (X) (4.1) 

x = (q, 52, x3, x4), At (X) = U~jkXid, A3 (X) = a&iZ1tl 

The matrix A, specifies the system’s principal part, A, determines the difference 
between the system’s natural frequency equal to unity, and the frequency of the external 
perturbing force. 

Let us obtain the evolutionary equations describing the behavior of system (4.1) at 
time t - e-p, We show below that the mag~tude of p is determined by the structure 

of Ao. In accordance with the scheme set forth in Sect.3 the process of obtaining the 
evolutionary equations is reduced to the following operations. We reduce A0 to the 
canonic form G = B’IA,B. Matrix G contains two second-order Jordan cells with 
eigenvalues X, = h, = i, h, = & = - i. We denote K = G - A, where A is 
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:he diagonal part of G. Then, the matrix A@) = Bh’B-i defines the principal terms 

in the desired evolutionary system. In the variables Si we obtain 

dX1 
-=r: 

dt +4 fef1(X), -g=+X3+ef,(x) 

ax3 
- = Efa(X)* at (4.2) 

Here fi (x) are resonant terms relative to As(t) , isolated from the linear, quadratic, 

and cubic perturbations. In (4.2) we perform a scale transformation of variables 
,. - 

5, = 21, 2, = 22, x3 = y 2EZ3, x4 = - 1/2Ez3, z = 1/-q% (4.3) 

Then in the variables zi we obtain 

dz, i dr = 24 + v’ifl (z>, dz3 / dz = #’ (z,, ZJ -t_ y’,-p’ (2) 
(4.4) 

dz, ,I dz = 23 4 j”-& (Z), dzq / dz = ftf’ (zlt zl) + fijf!“’ (2) 

From formulas (4.3) it follows that the characteristic time scale for the evolutionary 
system (4.4) is t, = e-*i*. To obtain fsfr) (zr, za) and f*(t) (zt, zz) in explicit form 
it is necessary to find the terms fi (Y) resonant relative to A in the class of linear, 

quadratic, and cubic perturbations, and next to obtain their images under the transforma- 

tion of variables X z= BY. 
The operator J?JA [QP (Y)l is specified by a diagonal matrix and those terms in each 

Qr, (Y) are resonant for which the corresponding elements of this matrix vanish iden- 

tically p], On passing to the variables Xi the resonant terms are obtained as complex 
conjugates,and to obtain real evolutionary equations from them we need to set up the 

appropriate linear combinations, It is not difficult to see that there are no resonant 
terms in Qa (Y) (the class of quadratic perturbations), while in the functions f,(l) (zl, 
z2) and f4W (zt, z2) there are present, from Qs (U) , the terms (~~2 + zas) (fizz - azt) 
and (zr2 -l- zS2) (@t - c@, respectivei y, where cz, 8 are constant real coefficients 

depending on the explicit form of the cubic perturbations. 
In order to determine the contribution to the evolutionary equations of the term 

-4, (A) from (4.1). it is necessary to compute its projection onto the null eigensubspace 
Of the operator j!., Af’ [QrX], i.e. to find its coordinates in the basis of eigenvectors, 

Having carried out the necessary calculations, we obtain the final form of the evolution- 
ary system 

dzl f d% = zg, dz3 I dt = (212 i_ zz2) @zz + azi) - pzl i&S) 

dz, / dz = zg, dzq, / dz = (z12 + 22”) (@I - azJ -I- ~23 

The coefficients a, p and r~ are of unit order if in (4.1) l.t is of order 1/< 

Example. Consider a system described by the Duffing equation 

d2x/dtz $ z = b sin ot -t_ &ax3 (4.6) 

which is under the action of an external periodic force. Let us study the resonant case 
when the frequency of the external force is close to the natural frequency of the unper- 
turbed system w - 1. The steady-state solutions of this system was studied in [3] in the 
case when the external perturbing force b .. t: is small, using the Liapunov-Poincark 

and the averaging methods. Let us derive the evolutionary equations describing the 
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system’s behavior in “slow time” for rhe case h - I. If Eq. (4.6) is reduced to form 
(4.1), we have A9 (X) = 0, while the vector A3 (X) = (0, cd, 0, 0). We proceed further 

in the following order. In (4.1) we perform the transformation of variables Y = B-lx, 
where B takes A, to diagonal form. From the terms or the cubic perturbations C, (Y) 
we select the resonant ones and we find their preimages in the variables 2. In (4.1) we 

cany out a scale transformation of variables in such a way that among the resulting 
resonant terms we isolate the principal ones. As a result we find that the characteristic 

time scale is t, = e-1. The difference from the general case is explained by the fact 

that (4.6) is actually a system with one degree of freedom. We compute the coefficients 
with which the principal resonant terms enter into the evolutionary equations. They are 

found from the coefficients of C, (Y). Finally, we obtain the following evolutionary 

system : dn 
dz == 

az2 azr Q - 1 -%l(z,~+zL.~), --g=-yz3 dz=“3- 8 

To answer the question of the region in which (4. S) is applicable, we should take the 
following into consideration. Formulas (4.3) drfined the characteristic time scale for 

(4.5) as t, = e?‘*. This holds only if all initial data .zi are of unit order, but it follows 
from (4.3) that for this it is necessary that the initial data for :rQ and x4 from (4.2) be 

of order v%. In the remaining cases the solutions of (4.2) grow almost linearly over a 
finite interval of time t, since over a time interval of unit order the small nonlinear- 

ities have no appreciable influence on the behavior of the solutions. Thus, Eqs. (4.5) 

describe the fundamental typical peculiarities in the behavior of systems of type (4.1). 

The author thanks A. M. Molchanov for constant attention and help with the work. 
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